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Abstract: We present evidence that the global juxtaposition of major assets relevant to the 

economy with the space and time expression of extreme floods or droughts leads to a much 

higher aggregate risk than would be expected by chance. Using a century long, globally gridded 

time series that indexes net water availability, we compute local occurrences of an extreme “dry” 

or “wet” condition for a specified duration and return period, every year. A global exposure 15 

index is then derived for major mining commodities, by weighting extreme event occurrence by 

local production exposed. We note significant spatial and temporal clustering of exposure 

leading to the potential for fat tail risk associated with investment portfolios and supply chains. 

The traditional approach of climate risk analysis only considers local or point extreme value 

analysis and hence does not account for this spatially and temporally clustered exposure. 20 

Consequently, the global economic implications of the past or future financial and social 

exposure are understated in current climate risk analyses. 

One Sentence Summary: Significant spatio-temporal clustering of extreme climate events can 

lead to fat-tail risk in exposure for society and multinational businesses. 
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1. Introduction  

A changing climate brings concerns as to whether there will be increasing business and societal 

disruptions as well as conflicts associated with increasing water scarcity or flooding. Even if 

there were no significant impact of climate change, the growing world population and 

urbanization lead to increasing resource demands and imbalances whose changing exposure to 5 

climate risk needs to be understood. Yet, there are very few analyses  (Bonnafous, Lall, & Siegel, 

2017a&b; Jain & Lall, 2001) of the aggregate global annual exposure to hydroclimatic extremes 

over the last century for specific industries, activities, or population, or of the nature of trends in 

such exposure. Given the nonstationary nature of climate extreme occurrence, and the 

intersection between the spatial structure of climate events and the concentration of human 10 

activity, there is potential for high residual risk, even if structural or financial instruments (e.g., 

insurance) were used to mitigate climate risk, and were designed based on the prior local climate 

record. The implication could be a fat tailed, systemic risk for global enterprises.  

 

From the perspective of a global investor, or of a development or humanitarian aid agency, an 15 

assessment of the potential occurrence of many extreme hydroclimatic events across the planet in 

a given year is needed to assess potential supply chain risks, production shortfalls, conflict or 

needs for humanitarian relief. The World Bank noted that its development efforts can be 

compromised by climate extremes and climate change (World Bank, 2014). The 2011 floods in 

Thailand, the 2010 floods in Queensland and Pakistan, the 2014-16 drought in Sao Paolo, and the 20 

2016-18 drought in Cape Town drew attention from their supply chain risk implications as well 

as the potential for the disruption of tourism, and global business. An area where the impacts of 

climate risk on global production has been highlighted is agriculture (USDA, 2010; Piao et al., 
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2010). Drought led to restrictions on exports of rice from key producing countries in 2008, 

leading to a doubling of the global price (Slayton, 2009; Bradsher, 2008). In this paper, we focus 

on another area of the economy, but also show the results a raw application of our analysis would 

give on urban center and four major crops as a reference in the supplementary material. We thus 

consider global socio-economic exposure to the once in 10 year hydroclimate extreme through 5 

the example of annual production of four major mining commodities (using 2014 and 2013 

production data) (SNL, 2016). It should be noted that in general, the production value we have 

localized only represents a significant part of global production, and not all of it according to 

USGS numbers (between 53 and 78%). This is due to the difficulty to obtain source point 

production values in certain countries due to reporting issues. While the exact results of exposure 10 

might change taking into account the rest of these portfolios, we expect the conclusions about the 

clustering of risk in space in time to be robust to such changes, and to be exacerbated by 

bottlenecks if one were to consider an entire supply chain. Both dry and wet events are 

considered for mining given the potential additional expense on water sourcing in a drought, and 

mine dewatering in wet years. The intention is to illustrate the nature of global exposure using a 15 

few globally relevant commodities. 

2. Data and Methods 

 

The evolution through time of wet and dry extremes has primarily been studied through indices 

derived directly from precipitation (𝑃) time series, and through relationships between 𝑃, 20 

evapotranspiration (𝐸), potential evapotranspiration (𝐸𝑝), soil moisture (𝑆𝑀), runoff (𝑅) and 

drought indices such as the Palmer Drought Severity Index (PDSI) and the SPEI. The SPEI 

(Beguería, Vicente-Serrano, & Angulo-Martínez, 2010; Beguería, Vicente-Serrano, Reig & 

Latorre, 2014) is a scalar index reported monthly. It is built after fitting a distribution on the 
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cumulative 𝑃 − 𝐸𝑝over the window of interest (e.g., 12 months). The dataset used is based on 

CRU (Harris, Jones, Osborn & Lister, 2014) data for both precipitation and potential 

evapotranspiration and is accessible at http://spei.csic.es/database.html. CRU is a gridded dataset 

with 0.5° x 0.5° spatial resolution of monthly temperature and precipitation built using 

interpolation of station network data, itself accessible at https://crudata.uea.ac.uk/cru/data/hrg/). 5 

The SPEI is thus a measure of the net water supply, as estimated using local precipitation and 

potential evapotranspiration, over specified durations. We chose to use the SPEI for our analysis 

since a global reconstruction of this index covering 1901-2014 that has been well verified was 

available, at a grid resolution of 0.5°. Since we are interested in an annual exposure, we used the 

12-month duration values of the SPEI. We limit our analyses to the land area bounded by 60°S to 10 

60°N, and for each grid location, and retain grid blocks that have no more than 10% missing 

data. To define a dry (wet) event, we first record, for each year, at each site, the quantile of SPEI 

time series for the return-level of interest (e.g. for a 10-year return level, on the dry side, the 

threshold is defined as 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑆𝑃𝐸𝐼𝑦𝑟
𝑚𝑖𝑛, 0.1), while on the wet side it will be 

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑆𝑃𝐸𝐼𝑦𝑟
𝑚𝑎𝑥 , 0.9). Months for which the SPEI is below (above) these thresholds are 15 

marked as belonging to a dry (wet) event. It should be noted that CRU may not provide adequate 

spatial coverage far back in time, especially in the Southern Hemisphere. This may affect the 

SPEI.For our first analysis, we consider the global land area exposed. Each event is then 

weighted by the area of the grid-block it corresponds to divided by the total land area. Further, 

using CRU data, we consider extremes in 𝑃 and 𝐸𝑝: for both of these variables, we aggregate 20 

monthly values over 12-month windows and define wet and dry events at a given location as 

above (inversing thresholds for 𝐸𝑝). In the supplementary material (Fig. S18), we also compare 

the results with those based on data from the 20CR reanalysis project (Compo et al., 2011), 
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accessible here: https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html (the variable names 

are “prate” for precipitation and “pevpr” for potential evapotranspiration) . We use the 𝑃 and 𝐸𝑝 

data of 20CR to compute a version of the SPEI. In each case, we study the proportion of the area 

of the world affected by dry or wet, dry, wet and dry and wet events in a given year.  

 5 

To apply our method to economic portfolios, data is collected from (SNL, 2016) to find the 

location of producing bauxite, copper, gold and iron ore copper mines in 2014. Each event is 

weighted with the 2014 share of production of each mine.  

 

Further, we perform wavelet and multitaper analysis to test important cycles in the data and 10 

covariation patterns with climate indices. Wavelet analysis uses base functions differing in time 

and frequency resolutions from specific families of oscillatory functions that attenuate to zero. 

Multitaper analysis uses different orthogonal data tapers separately to obtain different 

realizations of the power spectrum, and average over them, thus reducing bias in spectral 

estimation. Coherence between spectra enables one to identify common oscillatory behavior 15 

between time series. Using package biwavelet (Gouhier, Grinsted, & Simko, 2016), coherence is 

characterized by warmer colors, with significant regions circled in black. Using (Rahim, Burr & 

Rahim, 2017) common oscillatory behaviors from multitaper analysis are marked by spikes in 

Fig. S14, with the x axes corresponding to cycles/year (thus a 0.2 value corresponds to 5-year 

cycle).  20 
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3. Results 

The key findings from our analyses are illustrated in Fig. 1 and 2. We use the 1901-2014 data of 

the SPEI12 index, thus a measure of net water availability based on the cumulative difference 

between precipitation and potential evapotranspiration for a 12 month duration at each location, 

which is computed for each month in the record, and then mapped to a probability distribution, 5 

yielding monthly time series. We consider the 90th (10th) percentile of yearly maximum 

(minimum) of the SPEI time series at each location as a “dry” (“wet”) threshold, corresponding 

to a 10 year return period event. The occurrence of exceedance of this threshold at a given 

location in each year of the climate record is then weighted by the production (assumed here to 

be constant) at that location and spatially aggregated to provide an estimate of annual exposure. 10 

Another exercise that yields similar conclusion is to weight not the occurrence (1 or 0), but the 

number of months in a given year that are flagged as “extremes”. However, as we are simply 

here highlighting the spatio-temporal clustering and not interested in considering specific loss 

functions, we only present the former exercise. 

In the worst year, nearly 40% of the global land area experienced a 10 year dry or a wet event. 15 

Sectoral impacts are logically heavily clustered when assets are concentrated in a few locations. 

This is for instance the case for phosphates, for which, for the data we had available, the worst 

year translated into a nearly 84% exposure of global production, or for lithium and lead. Here, 

we thus only considered large portfolios with a wider variety of production locations. Even then, 

heavy tail effect can be observed. For instance, nearly 50% exposure of global copper production 20 

localized is exposed by a dry or wet event, in the worst year of available data. For all the 

portfolios considered, the maximum value hit computed corresponds to either extremely small 

probability of occurrence or unseen aggregate exposure when simulating 105 times 114 years 
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time series of exposure assuming the same asset value distribution and binomial distributions for 

wet and dry events with all locations experiencing independent extreme events. This illustrates 

that the spatial concentration of risk is dramatic for the tail events, highlighting the potential for a 

mega-catastrophe at a global scale in a few years per century, relative to what may be expected 

by chance at each location. If, for a given commodity 𝑖, we call 𝑋 𝑖 the production exposed in a 5 

given year, 𝑀𝑖  and 𝑚𝑖  respectively the maximum and median share of production exposed 

observed over 114 years, we have the following table: 

 

Commodity i Share of world 
production 

localized 

 

  

 

  

 

  

Bauxite 0.63 0.65 0.1865 0.2419 

Copper 0.78 0.50 0 0.0686 
Gold 0.61 0.42 0 0 

Iron Ore 0.53 0.69 0 0.0009 

The comparison between the 3rd and 4th column shows that the phenomenon tends to be much 

more acute for the maximum exposure, than for the median (ie. for more extreme events). 10 

Density estimation (Fig.1) also highlights the potential for fat tails, while smoothed time series 

of exposure with a smoothing window of 11 years (Fig. 2), make evident the existence of cycles. 

1 − 𝐹𝑋𝑖
(𝑀𝑖) 𝑀𝑖 1 − 𝐹𝑋𝑖

(𝑚𝑖) 
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Fig. 1: Empirical (red) and simulated (grey) density estimation of the yearly share of production exposed to a wet or dry 10-year 
event according to the 12-months SPEI for four difeerent portfolios 
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Fig. 2: Time series of weighted global annual share of production exposed for different commodities with 11 year local 

regression smoothed trends. Wet and dry events are considered 

Consistent with many analyses of longer duration hydrologic extremes (Greve et al., 2014; 5 

Sheffield & Wood, 2008; Sippel et al., 2017; Trenberth et al., 2014), the time series of global 

annual exposure for mining reveals a cyclical rather than monotonically increasing or decreasing 

trend (as may be expected from anthropogenic climate change). In several of the cases, using 

wavelet and spectral analyses we find evidence for connections to the El Niño Southern 

Oscillation and to climate indices known to exhibit decadal variability (Fig. S9-S13). 10 
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Given these observations, we explored the global land area exposed. The temporal trend of the 

global land area exposed to the crossing of the dry and wet thresholds of the 12 month SPEI 

index is shown in Fig. 3. An increase in the area affected by events of all types occurred through 

the 1970's. This was followed by a decrease in the total affected area. Note that the threshold 

used to determine whether an extreme event occurred at a location or not is determined as the 5 

appropriate quantile at that location using the corresponding data source. Hence, generic biases 

in observations in the net water availability at any location are not an issue in determining 

whether or not an extreme event occurred.  

 
 10 
Fig. 3: Global area proportion affected annually by exceedance of the 10-year, 12-month SPEI index for wet or dry (top left), wet 

and dry (top right), wet (bottom left), and dry areas (bottom right) event, with 95th confidence interval in shaded grey. 
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Figure 4: Wavelet coherence between the global share of area exposed and the Nino 3.4 DJF anomaly 

The recent decrease in wet events is largely observed in the tropics and subtropics for the CRU 

data (Fig. S7). The 1982-1983 El Niño event corresponds to the highest number of extremes 5 

(Fig. 3, Fig.5). The 5 years that show up with most events are (in decreasing order): 1983, 1984, 

1973, 1974, and 1976. Except for 1984, these correspond to some of the strongest DJF ENSO 

conditions (El Niño for 1983, 1973, La Niña for 1974 and 1976) (NOAA ESRL, 2016). Wavelet 

analyses of the derived hit series (performed with biwavelet (Gouhier, Grinsted, & Simko, 2016) 

show significant inter-annual and decadal variations, and are coherent with the NINO3.4 index at 10 

interannual (4 years) and decadal (16 years) frequencies after 1970 (Fig. 4 
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). A Multitaper spectral analysis (Rahim, Burr, & Rahim, 2017; Slepian, 1978; Thomson, 1982) 

also shows coherence for cycles of 4 years, consistent with the ENSO and NAO phenomena 

(Fig. S14), and with the PDO index at scales of about 8 years.  

 

 5 
Figure 5: Map of the number of months in exceedance of a 10-year return level threshold for a wet or dry event in 1983 

The spatial teleconnections of hydrologic extremes to the El Niño Southern Oscillation, and 

other organized modes of inter-annual to decadal climate variability are well studied and their 

impacts on agriculture and disasters are documented (Rojas, Li, & Cumani, 2014). However, 

other than studies on the production of specific crops, an analysis of the impact of these climate 10 

modes on the aggregate global impact has not been previously done, especially considering a 

specific risk threshold.  
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4. Conclusion 

In prior work (Bonnafous, Lall, & Siegel, 2017a&b) we illustrated impacts of hydrologic 

extremes with different return periods on mining company portfolios, and the associated 

potential value at risk. For global companies and supply chains, the role of hydroclimatic risk 

clustering in space and time is not well studied, especially since the exposure could result from a 5 

combination of effects on real assets, transportation, energy, water and health infrastructure, 

production and increase in local conflict under drought. A first step would be to develop 

influence diagrams that reflect the pathways of climate exposure for an investment portfolio or 

supply chain, and then integrate social and economic factors to assess possible aggregate 

exposure. Critical path analyses on these exposure networks can then be performed to identify 10 

exposure pathways that contribute most significantly to the aggregate risk, and to then develop 

risk mitigation strategies for those pathways. Such a framework would take into account 

compound events, and simply “add” the space-time clustering of risk to a framework akin to the 

one advocated in (Zscheischler et al., 2018). 

Parametric insurance and related financial instruments could provide an effective approach for 15 

risk mitigation. Examples of such products indexed to ENSO indices are available at scales 

ranging from farmer and micro-insurance to national banks to the World Food Program (Khalil, 

Kwon, Lall, Miranda, & Skees, 2007; Carriquiry & Osgood, 2012; Hellmuth, Osgood, Hess, 

Moorhead, & Bhojwani, 2009). Consider that a product were available where one could purchase 

a unit of insurance against a climate index (e.g., ENSO) exceeding a specified threshold, and the 20 

historical data for the index were publicly available. Then, a global or regional portfolio manager 

concerned with aggregate risk exposure could explore how often an exceedance of that threshold 

also led to an exceedance of the risk threshold for each element on their own exposure pathway, 
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and assess how well that index would influence their aggregate risk exposure. Where multiple 

climate indices are available for parametric insurance, the manager could optimize their 

allocation to a combination of those indices to mirror their risk exposure. Tradeoffs via reduction 

in exposure by considering alternate suppliers or by structural measures (e.g., storage or 

inventory) could also be considered.  5 

 

The quality of historical climate data sets degrades especially as one goes back before 1950. On 

the other hand, climate re-analysis products as well as the IPCC climate model integrations for 

the 20th century are known to show significant biases for hydroclimatic variables (Bozkurt, 

Rojas, Boisier, & Valdivieso, 2017; Ficklin, Abatzoglou, Robeson, & Dufficy, 2016; Liu, 10 

Mehran, Phillips, & AghaKouchak, 2014). However, we expect the conclusion as to the space 

and time clustering that translates into a fat tailed risk for global enterprises is robust. We 

reiterate that currently the space-time correlation structure of climate risk is largely unaddressed 

by risk managers, and that our goal was to establish the need to do so, retrospectively and 

prospectively. Analyses of the biases and uncertainty attendant to future climate projections in 15 

this context are needed and will depend on the model and the space-time resolution of the 

analysis.  
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